Partial uncoupling of neurotransmitter release from [Ca2+]i by membrane hyperpolarization.

نویسندگان

  • R Ravin
  • H Parnas
  • M E Spira
  • I Parnas
چکیده

The dependence of evoked and asynchronous release on intracellular calcium ([Ca2+]i) and presynaptic membrane potential was examined in single-release boutons of the crayfish opener neuromuscular junction. When a single bouton was depolarized by a train of pulses, [Ca2+]i increased to different levels according to the frequency of stimulation. Concomitant measurements of evoked release and asynchronous release, from the same bouton, showed that both increased in a sigmoidal manner as a function of [Ca2+]i. When each of the depolarizing pulses was immediately followed by a hyperpolarizing pulse, [Ca2+]i was elevated to a lesser degree than in the control experiments, and the rate of asynchronous release and the quantal content were reduced; most importantly, evoked quantal release terminated sooner. The diminution of neurotransmitter release by the hyperpolarizing postpulse (HPP) could not be entirely accounted for by the reduction in [Ca2+]i. The experimental results are consistent with the hypothesis that the HPP reduces the sensitivity of the release machinery to [Ca2+]i, thereby not only reducing the quantal content but also terminating the quantal release process sooner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial Uncoupling of Neurotransmitter Release From [Ca]i by Membrane Hyperpolarization

Ravin, R., H. Parnas, M. E. Spira, and I. Parnas. Partial uncoupling of neurotransmitter release from [Ca]i by membrane hyperpolarization. J. Neurophysiol. 81: 3044–3053, 1999. The dependence of evoked and asynchronous release on intracellular calcium ([Ca]i) and presynaptic membrane potential was examined in single-release boutons of the crayfish opener neuromuscular junction. When a single bo...

متن کامل

Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca2+ mobilization in dopamine neurons.

Activation of metabotropic glutamate receptors (mGluRs) causes membrane hyperpolarization in midbrain dopamine neurons. This hyperpolarization results from the opening of Ca(2+)-sensitive K(+) channels, which is mediated by the release of Ca(2+) from intracellular stores. Neurotransmitter-induced mobilization of Ca(2+) is generally ascribed to the action of inositol 1,4,5-triphosphate (IP(3)) i...

متن کامل

Oscillations of cytosolic free calcium in bombesin-stimulated HIT-T15 cells.

The mechanism underlying the generation of cytosolic free Ca2+ ([Ca2+]i) oscillations by bombesin, a receptor agonist activating phospholipase C, in insulin secreting HIT-T15 cells was investigated. At 25 microM, 61% of cells displayed [Ca2+]i oscillations with variable patterns. The bombesin-induced [Ca2+]i oscillations could last more than 1 h and glucose was required for maintaining these [C...

متن کامل

Cellular mechanisms of adrenaline-induced hyperpolarization in renal epitheloid MDCK cells.

The effects of adrenaline on the potential difference across the cell membrane, on formation of inositol phosphates and on intracellular Ca2+ ([Ca2+]i) were analysed in cells without or with pretreatment with pertussis toxin or phorbol 12-myristate 13-acetate (PMA). In untreated cells, adrenaline leads to a sustained hyperpolarization, a stimulation of Ins(1,4,5)P3 and Ins(1,3,4,5,)P4 formation...

متن کامل

Optogenetics: Control of Brain Using Light

Neuronal cells communicate with each other by producing electrical signals or action potentials (APs). Different ion channels, including Na+, K+ and Ca2+ channels, are involved in generation of AP. Once an AP is generated in the soma, it travels down entire the axon length toward its terminal in a self-generating fashion that ultimately conveys information between neurons in the neural circuit....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 81 6  شماره 

صفحات  -

تاریخ انتشار 1999